\qquad
\qquad

6.2
 Worksheet \#1

In Exercises 1 and 2, rewrite the expression in rational exponent form.

1. $\sqrt{7}$
2. $\sqrt[4]{13}$

In Exercises 3 and 4, rewrite the expression in radical form.
3. $14^{1 / 4}$
4. $117^{1 / 6}$

In Exercises 5 and 6, find the indicated real \boldsymbol{n} th root(s) of a.
5. $n=3, a=27$
6. $n=4, a=16$

In Exercises 7 and 8, find the dimensions of the cube. Check your answer.
7. Volume $=125 \mathrm{ft}^{3}$

8. Volume $=343 \mathrm{~m}^{3}$

In Exercises 9-11, evaluate the expression.
9. $\sqrt[3]{-125}$
10. $\sqrt[4]{81}$
11. $\sqrt[4]{-625}$

In Exercises 12 and 13, rewrite the expression in rational exponent form.
12. $(\sqrt[4]{14})^{3}$
13. $(\sqrt[3]{-40})^{5}$

In Exercises 14 and 15, rewrite the expression in radical form.
14. $10^{3 / 5}$
15. $(-3)^{6 / 5}$
16. $81^{3 / 4}$
17. $25^{3 / 2}$
18. $(-27)^{2 / 3}$
19. The area of a square patio is 49^{3} square inches. Find the length of one side of the patio.
20. The radius of a sphere is given by the equation $r=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}$, where V is the volume of the sphere. Find the radius, to the nearest centimeter, of a sphere that has a volume of 268 cubic centimeters. Use 3.14 for π.

6.1 Extra Practice

1. $\left(\frac{x^{3}}{y^{5}}\right)^{2}$	2. $\frac{5 x^{-2}}{15 y^{-3}}$	3. $\frac{(-4 x)^{3}}{-32 x^{8}}$
4. $\frac{x\left(x^{-5}\right)}{x^{-7}}$	5. $\left(\frac{1}{6}\right)^{-2}$	6. $\frac{2 x^{-5} y^{7}}{4 x^{6} y^{-8}}$
7. $\frac{\left(2 x^{5} y^{-7}\right)^{-3}}{\left(4 y^{3}\right)^{2}}$	8. $\frac{15}{25 y^{-4}}$	9. $\frac{\left(4 x^{4} y^{-11}\right)^{2}}{\left(5 x^{2}\right)^{0}}$

